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Thermal waves are of great significance as non-Fourier effects arise with ultrafast heating rates and small
system length. This study analytically and numerically investigated the behavior of thermal waves based
on the Cattaneo-Vernotte model at an ideal interface. A stable, fast algorithm based on the alternative
direction implicit method is introduced to solve the two-dimensional heat conduction problem. When
thermal waves meet with an ideal interface, some energy is reflected back while the rest is conveyed
across the interface, which are called the reflection and refraction of thermal waves. The changes of
the profile and direction and the energy distribution between the reflection and refraction of the thermal
waves are studied both analytically and numerically. Regardless of the boundary conditions imposed on
the interface, the reflection angle is always identical to the incident angle, and the ratio of the sine of the
refraction angle of the thermal waves to that of the incident angle is equal to the ratio of the thermal
wave speeds in the two material layers. A theoretical equation to describe the relationships between
the energy distribution and the material thermal properties shows that the thermal wave speeds in
the materials, the specific heat and the incident angle determine the thermal energy transmittance ratio.
Total reflection can occur for some conditions, and the nature of the energy conveyed by thermal waves is
interesting and instructive.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The thermal wave concept originates from the breakdown of
the classical Fourier’s law of heat conduction which implies an infi-
nite propagation speed of a thermal perturbation [1,2]. Moreover,
investigations of the second sound experimentally reveal that heat
pulses propagate at finite speed with wave characteristics [3]. In
particular, in nanomaterials pure diffusion predicted by Fourier’s
law fails to describe the heat conduction processes while lots of
phonons are transported in the ballistic regime [4]. With the
development of ultra-short pulse lasers and the miniaturization
of electronic devices, thermal wave propagation in multilayered
composite materials is of much significance as non-Fourier effects
arise with these ultrafast heating rates and high heat fluxes. The
wavelike behavior of thermal waves is widely recognized in
biomedical sciences [5–8], microelectronics [9,10], nanomaterials
[11–13], semiconductor materials [14–19] and other fields.

Several models have been proposed to characterize the propa-
gation of thermal waves [20–27]. One of the thoughts is to consider
that the diffusion coefficient is dependent on temperature and the
thermal conductivity is zero in undisturbedmedium to give a finite
propagation speed [21]. Cattaneo-Vernotte model (CV) was
proposed for the starting problem of gas based on kinetic theory
[22,23]. Dual-phase-lag model (DPL) considers the relaxation
terms for both heat flux and temperature gradient [24]. Phonon
hydrodynamic model was proposed based on the solutions for
the linear phonon Boltzmann equation [25,26]. Thermomass model
(TM) describes the movement of thermomass based on the relation
between energy and mass [27]. These models involve the inertia
term, nonlocal term and nonlinear term, which could remove the
paradox of the infinite heat perturbation speed in Fourier’s law.
However, the relaxation term of heat flux is thought to be the main
factor to make it wavelike. In addition, several models would
behave like CV model if given proper parameters. CV model is
written as

qþ s @q
@t

¼ �krT; ð1Þ

where q is the heat flux, T is the temperature, k is the thermal
conductivity and s is the relaxation time. It is simple and typical
to study the relaxation effect of thermal waves.

The propagation characteristics of thermal waves have been
studied both experimentally and theoretically. Peshkov first mea-
sured the second sound velocity in helium II and obtained a speed
of 19 m/s at 1.4 K [3]. More evidence of thermal waves was then
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Nomenclature

q heat flux
x x-coordinate of the domain
y y-coordinate of the domain
L length of the domain
t time
t0 duration time of imposed pulse
Dx spatial steps
Dt time steps
k thermal conductivity
q density
Cv specific heat
A amplitude of imposed pulse
Z dimensionless relaxation time
T temperature, period length
B coefficient matrix
L upper triangular matrix
U lower triangular matrix
w transitional vector
v speed of thermal wave
r thermal energy transmittance ratio
m material speed ratio
G integral of energy
DTtheory temperature rise defined by heat flux
Iheat thermal energy density
a coefficient of Fourier decomposition
b coefficient of Fourier decomposition

Greek symbols
s total energy
k coefficient of analytical solution

a incident angle, thermal diffusivity
b refraction angle
h reflection angle
x frequency of thermal waves
D fluctuation of quantity

Superscripts
⁄ dimensionless parameter
n time layer

Subscripts
0 reference state
1 materials in the left of interface
2 materials in the right of interface
ini initial state
diff diffusion process
ballistic ballistic process
x vectors in x-coordinate direction
y vectors in y-coordinate direction
i incident process
r reflection process
t refraction process
time in time
space in space
total total energy
n coefficient number
critical critical value for total reflection
min minimum value
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found in other media, such as solid helium [28,29], NaF [30] and Bi
[31]. Tsai and MacDonald [32] performed molecular dynamics
(MD) simulations which showed thermal waves can be observed
at room temperature or at even higher temperatures within tiny
length and time scales. Lee et al. [12] performed first principle cal-
culations and demonstrated that in hydrodynamic phonon trans-
port processes, where R-scatterings can be neglected and
momentum is conserved, the second sound phenomenon occurs.
Yao et al. [11] used nonequilibrium MD simulations to study heat
pulse propagation through graphene and found that thermal waves
are transported in a ballistic way. Hua et al. [33] and Tang et al.
[4,34,35] developed the phonon Monte Carlo (MC) methods for
ballistic-diffusive thermal transport and studied ballistic thermal
waves in a thin film.

As in light and sound, the wavelike characteristics of thermal
waves are fascinating. The phenomena, such as overshooting
[36,37], diffraction [38,39], reflection [40–47], refraction [48] and
dispersion [49], have been investigated in detail. In particular,
the behaviors of thermal waves at an interface have been studied
for its importance in multilayered composite material heat con-
duction [5,9,50–59]. Tzou [48] used a harmonic analysis to study
the reflection and refraction patterns of thermal waves from a sur-
face and at an interface between dissimilar materials to show that
the reflection angle depends on the ratio of the thermal wave
speeds in both media. Bertolotti [15,40] used a mirage technique
to experimentally demonstrate that Snell’s law still fits the situa-
tion, indicating that the relationships between the angles and
material properties still hold. Khadrawi et al. [60] studied the ther-
mal behaviors of perfect and imperfect contact composite slabs
using the hyperbolic heat conduction model. Lor and Chu [61,62]
emphasized the significant influence of the thermal interface resis-
tance, and extended numerical calculations to two-dimensional
planes, in a study of reflected waves from insulated boundaries
in a rectangular plate. Ho et al. [50] used the lattice Boltzmann
method to investigate the heat transfer in multilayered materials
within the framework of the dual-phase-lag (DPL) heat conduction
model to show the temperature profiles after a heat pulse passed
across an interface. Liu [63] analyzed metal films using the hyper-
bolic microscopic two-step model and found that the hyperbolic
nature of heat in an electron gas significantly affects the thermal
behaviors at early times. Al-Nimr et al. [9,53,54] investigated the
DPL model for composite structures and considered the influence
of the thermal boundary resistance, initial temperature, and mate-
rial thermal properties on the thermal waves penetrating into
another media.

Nevertheless, there are still few theories for the thermal energy
distribution when heat pulses propagate through an interface. Pre-
vious studies have mainly focused on qualitative descriptions of
the temperature profiles, with few discussions about the quantita-
tive characteristics, which are important for precise thermal con-
trol in terms of thermal waves. In addition, the increases of
system complexities require two-dimensional models to show
how the heat propagates in complex structures and whether the
principles drawn from one-dimensional assumptions are still
applicable.

Interfacial thermal resistance, which is influenced by the prop-
erties of materials in contact, can largely affect the profiles of
waves and energy transmittance ratio [54]. Hua and Cao [64,65]
found that phonons in ballistic-diffusive regime generate boundary
temperature jump because of the interactions between phonons
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and boundaries, which would increase the interfacial thermal
resistance. A radiant boundary condition is the common approach
to model the interfacial thermal resistance [66]. However, when
the problem is extended from 1D to 2D, more assumptions are nec-
essary except energy conservation and it requires further investi-
gations to understand the thermal behaviors at the interface. Lor
and Chu [62] found when the thermal contact resistance is beyond
the critical number, a perfect contact assumption could work. In
this paper, in order to show the most typical phenomena in the
reflection and refraction processes, the interfacial thermal resis-
tance has been ignored.

The objective of this study is to quantitatively analyze the ther-
mal energy distribution at the interface between dissimilar layers
with perfect contact, when one side of a rectangular zone is
exposed to a time-dependent, pulsed boundary heat flux based
on CV model. Section 2 describes the traveling wave method and
analyzes the behaviors of thermal waves at an ideal interface. Sec-
tion 3 introduces a numerical algorithm for this two-dimensional
heat conduction problem, based on alternative direction implicit
method (ADI). The comparisons in Section 4 between analytical
solutions and simulation results show great correspondence. An
equation set describing the relationships of angles and energy dis-
tribution is proposed. It shows that the incident angle, volumetric
heat capacity and thermal wave speed in materials determine the
ballistic thermal energy transmittance ratio. The phenomenon of
total reflection is observed.

2. Theoretical models

The traveling wave method was used to analyze the thermal
wave behaviors at an ideal interface [40]. Regardless of the influ-
ence of diffusion term, the thermal wave interaction with an inter-
face is governed by a purely hyperbolic equation. Thus, CV model
(Eq. (1)) can be transformed into

s @q
@t

¼ �krT: ð2Þ

Consider the case where one side of the region is exposed to a
pulsed heat flux which generates a thermal wave propagating for-
ward. The solution that describes the heat flux waves can be
expressed as

q ¼ A expðixt � i k
!
� r!Þ ð3Þ

where A is the amplitude of the heat flux, x is the frequency of the

heat source and k
!
is the wave vector.

The expressions for the three waves shown in Fig. 1 are:
for the incident wave,
Fig. 1. Illustration of incident angle, a, reflection angle, h, and refraction angle, b,
and the relationship between the incident, reflection and refraction waves.
qi ¼ Ai expðixt � i k1
!
� r!Þ; ð4:1Þ

for the reflection wave,

qr ¼ Ar expðixt þ i k1
!
� r!Þ; ð4:2Þ

for the refraction wave,

qt ¼ At expðixt � i k2
!
� r!Þ; ð4:3Þ

where the subscripts i, r, and t respectively, represent incidence,
reflection and refraction and subscripts 1 and 2 respectively, repre-
sent the thermal properties of materials I and II.

The thermal wave speed based on CV model is determined by
the ratio of the thermal diffusivity to the relaxation time as

v ¼
ffiffiffiffiffiffiffiffi
a=s

p
: ð5Þ

As with the radiant energy density, the ballistic thermal energy
density can be defined as the ratio of the heat flux to the thermal
wave speed as

Iheat ¼ q
v : ð6Þ

In the experiments detecting the second sound (thermal wave),
the temperature profiles are always derived from the ratio of the
heat flux to the thermal wave speed, as Shimazak [2] adopted
the Eq. (7),

DTtheory ¼ q
qcpC20

; ð7Þ

in his study where C20 is the heat perturbation speed. Analogous to
Eq. (7), one kind of temperature profile fluctuations in thermal
waves can be defined as

DTballistic ¼ q
qCVv

; ð8Þ

where v is the thermal wave speed based on CV model. The thermal
wave conveys the ballistic thermal energy from one side to the
other. In the process, the temperature fluctuations can be divided
into one caused by diffusion and another caused by ballistic trans-
port [67]

T ¼ T ini þ DTdiff þ DTballistic; ð9Þ
where Tini represents the initial temperature of the media, DTdiff
represents the fluctuations caused by diffusion and DTballistic repre-
sents the fluctuations caused by ballistic transport. Considering the
relationship between the ballistic temperature fluctuations,
DTballistic, and the ballistic thermal energy density, Iheat, the ballistic
thermal energy Eballistic is defined as

Eballistic ¼
Z
L
qCVDTballisticdx ¼

Z
L
Iheatdx: ð10Þ

Combined with Eq. (6), it gives

Eballistic ¼
Z
L

q
v dx: ð11Þ

Eballistic is used to describe the thermal energy propagation in the
media, which is then used to study the energy distribution charac-
teristics of the interface.

On the assumption of no interface resistance, the interface con-
ditions satisfy

Tjx!x� ¼ Tjx!xþ
qjx!x� ¼ qjx!xþ

�
: ð12Þ

Ignoring the diffusion term as in Eq. (2) means that DTdiff is
zero. Combining Eqs. (4.1)–(4.3) with the interface conditions
(Eq. (12)) gives
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qi

ðqCvÞ1v1
þ qr

ðqCvÞ1v1
¼ qt

ðqCvÞ2v2
; ð13:1Þ

qi cosa� qr cos h ¼ qt cosb; ð13:2Þ

qi sinaþ qr sin h ¼ qt sinb; ð13:3Þ
where a is the incident angle, h is the reflection angle, and b is the
refraction angle as shown in Fig. 1. In addition, v represents the
thermal wave speed in the media and qCv represents the volumetric
specific heat. The results can be simplified as

a ¼ h; ð14:1Þ

sinb
sina

¼ v2

v1
; ð14:2Þ

qt

qi
¼ 2ðqCvÞ2v2 cos h

ðqCvÞ2v2 cosbþ ðqCvÞ1v1 cos h
; ð14:3Þ

DTt;ballistic

DT i;ballistic
¼ 2ðqCvÞ1v1 cos h

ðqCvÞ2v2 cosbþ ðqCvÞ1v1 cos h
ð14:4Þ

These equations can show that the reflection angle h is equal to
the incident angle a (Eq. (14.1)), and that ratio of the sine of the
refraction angle to the sine of the incident angle is identical to
the ratio of the thermal wave speeds in the two materials
(Eq. (14.2)). Eq. (14.3) implies the factors that influence the ratio
of the heat flux amplitude of refraction wave to that of the incident
wave. Eq. (14.4) shows the relationships that thermal wave speed,
volumetric heat capacity and incident angle determine the ampli-
tude of temperature fluctuations due to ballistic transport of
refraction wave to that of incident wave.

The ratio of the ballistic thermal energy of the refraction wave
to that of the incident wave can be derived from Eqs. (14.3) and
(14.4) as

r ¼ Et

Ei
¼

Z
L2

qt

v2
dx

Z
L1

qi

v1
dx ¼

�
2ðqCvÞ2v2 cos h

ðqCvÞ2v2 cosbþ ðqCvÞ1v1 cos h
;

ð15Þ
where r is called the thermal energy transmittance ratio (TETR),
which represents the portion of the energy that is transmitted
through the interface per unit cross sectional area. Considering
the change in the cross sectional area caused by different incident
angles and refraction angles, the ballistic thermal energy conveyed
across the interface can be expressed as

Et;total

Ei;total
¼ Et cosb

Ei cos h
¼ 2ðqCvÞ2v2 cos b

ðqCvÞ2v2 cos bþ ðqCvÞ1v1 cos h
: ð16Þ

Another important parameter is the material speed ratio (MSR),
which describes how the thermal wave speeds up or slows down
when propagating across the interface. It is derived from the ratio
of the thermal wave speed in material II to that in material I

m ¼ v2=v1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2s1Þ=ða1s2Þ

p
: ð17Þ

For the sake of convenience, the material where the thermal
waves have higher speed is called the thermally thinner medium,
by analogy to an optically thinner medium, while the material
where the thermal waves have relatively lower speed is called
the thermally denser medium. When m < 1, the ballistic thermal
energy propagates from the thermally thinner medium into the
thermally denser medium. On the other hand, when m > 1, the bal-
listic thermal energy propagates from the thermally denser med-
ium into the thermally thinner medium. When m = 1, there is no
interface. The discussions in the following sections imply that
MSR is one of the most significant properties of the interface. For
example, the ratio of the sine of the refraction angles to that of
the incident angles is identical to MSR.

Thus, regardless of boundary resistance, when thermal waves
propagate across an interface,

(i) The incident wave causes two waves, namely a reflection
wave and a refraction wave.

(ii) The reflection angle always equals the incident angle while
the ratio of the sine of the refraction angle to the sine of inci-
dent angle equals the material speed ratio.

(iii) The thermal energy transmittance ratio can be explicitly
expressed in terms of material speed ratio, heat capacity
and incident angle.

3. Numerical methods and its validation

3.1. CV model

The derivative part of heat flux with respect to time in thermal
wave models is responsible to the wavelike properties [68]. Zhang
et al. [69] studied the damping effect of CV model, DPL model and
TM model and found that a damping factor n, which is related to
the relaxation term, could be defined to determine the damping
of thermal waves. CV model, which possesses the typical charac-
teristics of thermal waves, is adopted to simulate a two-
dimensional heat conduction problem without inner heat sources.
The materials are assumed to be isotropic. Eq. (1) is combined with
the energy conservation equation to give

qx þ s @qx

@t
¼ �k

@T
@x

; ð18:1Þ

qy þ s
@qy

@t
¼ �k

@T
@y

; ð18:2Þ

qCv
@T
@t

þ @qx

@x
þ @qy

@y
¼ 0; ð18:3Þ

where qx is the heat flux along the x direction at the node, qy is the
heat flux along the y direction at the node and T represents the node
temperature. The calculation is simplified by introducing the fol-
lowing dimensionless parameters:

x� ¼ x=d; t� ¼ t=t0; T
� ¼ T=T0; q�

x ¼ qx=q0; q
�
y ¼ qy=q0;

k� ¼ k=k0; ðqCvÞ� ¼ ðqCvÞ=ðqCvÞ0; Zq ¼ s=t0:
ð19Þ

In Eq. (19), (qCv) is dealt with as one parameter because q and
Cv are always linked and play similar roles. These dimensionless
values then fit:

k0T0
dq0

¼ 1
q0t0

ðqCv Þ0T0d ¼ 1

8<
: ð20Þ

For convenience, the asterisks are uniformly omitted and the
parameters discussed below are all dimensionless. Eqs. (18.1)–
(18.3) can then be transformed into

qx þ Zq
@qx

@t
¼ �k

@T
@x

; ð21:1Þ

qy þ Zq
@qy

@t
¼ �k

@T
@y

; ð21:2Þ

qCv
@T
@t

þ @qx

@x
þ @qy

@y
¼ 0: ð21:3Þ



Fig. 2. Computational domain in a rectangular coordinate system with the origin at
the bottom left. An inclined interface in the center divides the domain into material
I and material II with different thermal properties. The energy propagation across
the interface is monitored at three points after the interface. The heat pulse is
imposed at the entire left boundary of material I at the beginning. Fig. 3. Locations of the heat flux nodes and temperature nodes where the heat flux

nodes are at the boundaries of the temperature control volumes.

Fig. 4. Shapes of the heat pulses imposed at the left boundary: (a) sine function
heat pulse, (b) rectangular heat pulse, (c) triangular heat pulse, and (d) ramp heat
pulse.
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3.2. Simulation details

The model is applied to a two-dimensional heat conduction
problem in a rectangular plane with constant thermal properties.
Square elements are used to divide the computational domain into
5 � 105 control volumes. The coordinate system is given in Fig. 2
and the entire system is assumed to be isotropic without inner
heat sources. An oblique ideal interface is constructed between
the two dissimilar materials, Material I and Material II. The inci-
dent angle is altered by changing the slope of the interface while
maintaining the direction of the incident thermal wave. The ther-
mal properties of Material I on the left side are k1, s1 and q1 while
the properties of Material II are k2, s2 and q2 where k represents
the thermal conductivity and s represents the relaxation time.

The domain is initially at a steady state at temperature T0 with-
out any heat fluxes. All the boundaries are insulated except the left
boundary where a heat pulse is applied. The heat flux and the tem-
perature of each element are defined at different locations due to
their specific distribution characteristics. Every heat flux node is
positioned between two temperature nodes as shown in Fig. 3 to
prevent numerical oscillations.

A heat pulse in the positive x direction is added along the entire
left boundary from the beginning time. The heat flux is assumed to
only influence the nodes at the boundary with little impact on the
interior nodes. The four kinds of heat pulses considered here and
shown in Fig. 4 are described by:

sinusoidal heat pulse

qjx¼0 ¼ A� ð1� cosð2pt=t0ÞÞ t 6 t0
0 t > t0

�
; ð22:1Þ

rectangular heat pulse

qjx¼0 ¼ A t 6 t0
0 t > t0

�
; ð22:2Þ

triangular heat pulse

qjx¼0 ¼ A� 1� 2t
t0
� 1

��� ���� �
t 6 t0

0 t > t0

(
; ð22:3Þ

ramped heat pulse

qjx¼0 ¼ A 1� t
t0

� �
t 6 t0

0 t > t0

(
: ð22:4Þ

where A is the heat pulse amplitude which was set to 1 in the sim-
ulations and the nondimensional pulse time, t0 was set to 0.1. The
nondimensional initial temperature, T0 was set to 1 and the rectan-
gular region was 2 � 1 (length �width). Other parameters used in
the simulations are listed in Table 1. The thermal wave propagates
from Material I into Material II across the interface where the inter-
face conditions in Eq. (12) are satisfied.

The heat fluxes were recorded at three points in the simulations
with the points located right after the interface in Material II as y
equals 0.2, 0.5 and 0.8. The heat fluxes at these points cannot be
directly compared because of the damping effect. The heat fluxes
at these points with no interface were taken as reference values.
And the ratios of the heat flux with an interface to these reference
values demonstrate some key principles of this problem.

A staggered interface was used to replace the actual oblique
interface. It was constructed from the nodes in the left plane
(Material I) nearest to the actual interface as shown in Fig. 5. This
transformation has been widely used in regular grids, because it
can reduce the complexity of meshing grids.
3.3. Alternative direction implicit difference scheme

The alternative direction implicit difference scheme (ADI) was
used to solve the equations [70]. ADI is often used to solve two-
dimensional or multi-dimensional problems in fluid dynamics.



Table 1
Computational parameters.

Parameter Value Parameter Value

Thermal conductivity, k0 (W/K) 150 Model width, d (nm) 57.7
Specific heat, CV (J/(K�kg) 700 Model length, l (nm) 115.4
Relaxation time, s0 (ps) 33.3 Initial temperature, T0 (K) 300
Thermal diffusivity, a0 (m2/s) 1 � 10�4 Heat flux amplitude, A0 (W/s) 2.6 � 1011

Heat pulse duration, t0 (ps) 3.33 Density, q0 (kg/m3) 2328.3
Space interval, Dx (1) 2 � 10�3 Time interval, Dt (1) 1 � 10�4

Fig. 5. Staggered interface structure and the actual interface: the nodes just left of
the actual interface are connected to form the computational domain in red. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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For two-dimensional problems, it is unconditionally stable, while
for multi-dimensional problems, it is conditionally stable. The
algebraic equations were solved using the chasing method instead
of iteration to reduce the computation time and storage space
requirements.

In the method, one time step is divided into two parts from tn to

tnþ
1
2 and from tnþ

1
2 to tnþ1. T and qx are calculated implicitly in the x

direction in the first part, while T and qy are calculated explicitly in
the y direction as

qn
x;iþ1

2;j
þ Zq

q
nþ1

2
x;iþ1

2;j
� qn

x;iþ1
2;j

1
2Dt

¼ �k
T
nþ1

2
iþ1;j � T

nþ1
2

i;j

Dx
; ð23:1Þ

qn
y;i;jþ1

2
þ Zq

q
nþ1

2
y;i;jþ1

2
� qn

y;i;jþ1
2

1
2Dt

¼ �k
T
nþ1

2
i;jþ1 � T

nþ1
2

i;jþ1

Dy
; ð23:2Þ

qCv
T
nþ1

2
i;j � Tn

i;j
1
2Dt

þ
q
nþ1

2
x;iþ1

2;j
� q

nþ1
2

x;i�1
2;j

Dx
þ
qn
y;i;jþ1

2
� qn

y;i;j�1
2

Dy
¼ 0: ð23:3Þ

Because of the staggered mesh, the locations of qx and T are
interlaced. The coefficient matrices derived from Eqs. (23.1) and
(23.3) are strongly diagonally dominant.

The chasing method is a way to solve tridiagonal algebraic
equation sets. The process can be expressed as

Bz ¼ f ; ð24Þ

z ¼ q
nþ1

2
x;12;j

; T
nþ1

2
1;j ; q

nþ1
2

x;32;j
; . . . ; T

nþ1
2

n;j ; q
nþ1

2
x;nþ1

2;j

h i
; ð25Þ

where B is the coefficient matrix, z is a vector consisting of T and q
as shown in Eq. (25) and f is the nonhomogeneous term. Then, A can
be split into two matrixes as

B ¼ LU; ð26Þ
where L is a lower triangular matrix and U is an upper triangular
matrix. Both are tridiagonal matrices, which means they are bivari-
ate diagonal. Eq. (24) can then be transformed into
Lw ¼ f ;

Uz ¼ w:
ð27Þ

Then the values could be calculated one by one [71].

After the calculation of qx and T at the tnþ
1
2 time step, qy is calcu-

lated using Eq. (23.2). The next half step from the time step tnþ
1
2 to

tnþ1 is similar with T and qy calculated implicitly in the y direction
while T and qx are calculated explicitly in the x direction as

q
nþ1

2
x;iþ1

2;j
þ Zq

qnþ1
x;iþ1

2;j
� q

nþ1
2

x;iþ1
2;j

1
2Dt

¼ �k
T
nþ1

2
x;iþ1;j � T

nþ1
2

x;i;j

Dx
; ð28:1Þ

q
nþ1

2
y;i;jþ1

2
þ Zq

qnþ1
y;i;jþ1
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Then, the chasing method is used to solve the algebraic equa-
tion sets for qy and T. Then qx is calculated using Eq. (28.1). The pro-
cedure for each computation time step is summarized as:

(i) Discretize the partial differential equation set into nodal
algebraic equation sets, explicitly in the y direction and
implicitly in the x direction for the heat flux and the temper-

ature in time step tnþ
1
2.

(ii) Solve the tridiagonal system for qx and T using the chasing

method in time step tnþ
1
2.

(iii) Calculate qy from qx and T in time step tnþ
1
2.

(iv) Discretize the partial differential equation sets into nodal
algebraic equation sets in the other direction, explicitly in
the x direction and implicitly in the y direction for the heat
flux and the temperature in time step tnþ1.

(v) Solve the tridiagonal system for qy and T using the chasing
method in time step tnþ1.

(vi) Calculate qx from qy and T in time step tnþ1.

The calculations then advance one time step forward. This
scheme adopted has second order accuracy in space and first order
accuracy in time. The conditions for convergence are that the
matrix is strongly diagonally dominant,

minðZq=k;qCV Þ P max
Dt
Dx

;
Dt
Dy

� 	
: ð29Þ

This method is robust and efficient with fewer iterations, so that
more nodes can be included to increase the simulation accuracy.

3.4. Validation

A one-dimensional example was used to verify the validity of
the computational method. The heat flux and temperature varia-



Fig. 6. Comparisons of the analytical solution (curves) with simulation results for a
one-dimensional heat conduction problem (symbols).
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tions were assumed to be modeled by CV model with initial tem-
perature gradients. The initial temperature distribution was

Tðx;0Þ ¼ T0 þ T0 sin
px
L

� �
;
@Tðx;0Þ

@t
¼ 0: ð30Þ

The boundary conditions were isothermal,

Tð0; tÞ ¼ T0; TðL; tÞ ¼ T0: ð31Þ
The exact solution can be derived by the method of separation

of variables [72],

Tðx; tÞ ¼ T0 exp � t
2s

� 	
sin

px
L

� �
cosðktÞ þ 1

2sk
sinðktÞ


 �
; ð32Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2p2a
sL2

� 1
4s2

q
.

As shown in Fig. 6, the simulation results of the ADI algorithm in
this one-dimensional problem agree well with the analytical solu-
tion, implying that the method is valid. The grid independence was
verified using the results with the present space interval, 2 � 10�3,
and time interval, 1 � 10�4 as reference. The relative error was cal-
culated as the percentage of the deviation of the peak of the heat
flux and the temperature at time t=0.5 from the standard. The rel-
ative errors listed in Table 2 show that the space step and time step
are reasonable. The excellent agreement with the theoretical solu-
tion and the grid independence mean that the scheme is reliable.

4. Simulation results and discussion

4.1. Normal incidence

Normal incidence was investigated with the material interface
parallel with the wavefront of the thermal wave. Considering the
relationships between the heat flux and the ballistic temperature
fluctuations in Eqs. (8)–(11), the temperature profiles and the heat
flux profiles are both used to describe the reflection and refraction
phenomena. An interface was constructed by changing the thermal
conductivity, k of both materials while keeping the other
Table 2
Grid independence validation.

Spatial steps (Dx) 1 � 10�2 5 � 10�3

Error in q (%) 3.72 0.14
Error in T (%) 2.66 0.22
properties constant. The MSR was derived from the square root
of the ratio in Eq. (5).

Fig. 7 shows jumps in the peak values of both the temperature
and heat flux profiles at the interface. The peak is known to dis-
sipate during the process. For m < 1, which means that the ther-
mal wave propagates from a thermally thinner medium into a
thermally denser medium, the peak temperature of the refraction
wave is higher than that of the incident wave. At the same time, a
positive reflection wave begins to propagate in the negative x
direction. The positive reflection temperature wavefront means
that part of the ballistic thermal energy conveyed by the thermal
wave is reflected and the area in the left of the interface will be
heated once again by the reflection wave. This phenomenon is
called a hot reflection wave. Actually, material II has less ability
to convey the thermal energy than material I, so only part of
the ballistic thermal energy is transported through the interface
and the rest is reflected back. For this reason, the slower propaga-
tion of energy results in a higher temperature peak. The heat flux
curves in Fig. 7(b) show a drop after the interface, which means
that the peak heat flux in the refraction wave is lower than that
in the incident wave. In addition, there is a negative reflection
wave for the heat flux. The negative values mean that the reflec-
tion wave is propagating in the negative x direction because the
heat flux is actually a vector. When m > 1, which means that
the thermal wave propagates from a thermally denser medium
into a thermally thinner medium, the results become much more
interesting. The temperature peaks of refraction wave are lower
and the amplitude of the reflected wave is negative, which means
the temperature is lower than ambient temperature. It implies
that the area in the left of the interface will be cooled by the
reflection thermal wave, so this phenomenon is called a cool
reflection wave. The heat flux profiles of refraction wave have a
higher peak and there is a reflection heat flux wave with positive
amplitude. The positive values indicate that the heat flux direc-
tion is opposite to the thermal wave propagation direction. The
reflection wave results in a tendency of ballistic thermal energy
conveyed along the positive direction of the x axis. The energy
transmitted through the interface for this case is then more than
that of the incident wave. The reasons are that the governing Eq.
(1) and the interface conditions Eq. (12) must be satisfied at the
same time. The thermal wave in material II has a higher speed,
thus, it is able to convey energy more rapidly. However, the heat
flux remains the same on both sides, which means that the ballis-
tic thermal energy density decreases after the interface in Eq. (6),
which reduces the peak of the temperature fluctuations and leads
more energy to propagate through the interface. Because more
energy passes through the interface, the area before the interface
have to generate a heat flux to make up for the lost energy to
maintain the thermal equilibrium. This then creates a cool reflec-
tion wave. The sudden increase of the heat flux peak in Fig. 7(d)
at about x = 1 is caused by the overshooting from the boundary
reflection [37].

Thermal energy transmittance ratio r, is introduced to get a
quantitative estimation of the ballistic thermal energy transfer
across the interface. When a solitary wave moves forward in the
medium, the integral of the wave profile over time at one point
Gtime and the integral of the wave profile in space at one time Gspace

are related as
2.5 � 10�3 1 � 10�3 2 � 10�4

4.90 � 10�2 7.89 � 10�2 9.39 � 10�2

1.41 � 10�2 3.98 � 10�3 8.00 � 10�3



Fig. 7. Locations from the y axis and the peak values of the maximum temperatures and heat fluxes along the thermal wavefront at various times and material speed ratios.
(a) Temperatures at m = 0.8, (b) heat fluxes at m = 0.8, (c) temperatures at m = 1.5 and (d) heat fluxes at m = 1.5.

1 For interpretation of color in Fig. 9, the reader is referred to the web version o
this article.
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Gtime ¼
Z
T

Aexpðixt� ikxÞ
c

dt¼x
k

Z
L

Aexpðixt� ikxÞ
c

dx¼x
k
Gspace:

ð33Þ
The ballistic thermal energy is mainly conveyed by the thermal

waves, as shown in Eqs. (8)–(11). Thus, the spatial integral can be
transformed into a temporal integral to eliminate the difficulty of
accumulating ballistic thermal energy in space. Another advantage
of this method is that it can help avoid the influence of dissipation
during the propagation and focus only on the impact of the inter-
face. To get the ballistic thermal energy of the incident wave at the
interface, a blank control group is defined where there is no inter-
face and the ballistic thermal energy is detected at the same
positions.

From Eq. (15), when the incident angle is zero, the TETR r obeys

r ¼ Et

Ei
¼ 2ðqCvÞ2v2

ðqCvÞ2v2 þ ðqCvÞ1v1
ð34Þ

The MSRs are changed by changing either the thermal conduc-
tivity ratios of the materials or the relaxation time ratios while the
other parameters remain unchanged. Fig. 8 shows how the MSRs
influence the thermal energy transmittance ratio r. The discrete
points representing the numerical results agree well with the curve
predicted by the theoretical model. The ratio, r increases with
increasing material speed ratio, and when m equals 1, r also equals
1. When m > 1, the thermal energy transmittance ratio is larger
than 1, which means that more energy is transmitted than the total
incident ballistic thermal energy. It demonstrates that the most
important property is the MSR, not the thermal conductivity ratio
or the relaxation time ratio alone.
4.2. Oblique incidence

4.2.1. Shapes and direction
The wave directions are altered after reflection and refraction at

the interface. The temperature profiles of thermal waves with an
incident angle of 45� are shown in Fig. 9, where the material speed
ratios are 0.8 and 1.22. The inclined gray plane represents the
interface. The reflection wave is labeled in the figure and the
refraction part is easy to distinguish. The reflection wave is light
green1 for m = 0.8, showing that the temperature is higher than
the ambient temperature in blue. The reflection wave is purple for
m = 1.22, implying a lower temperature. The behaviors are similar
with what happens with normal incidence, with some difference.
One difference is the direction of the refraction wave and reflection
f



Fig. 8. Thermal energy transmittance ratios predicted by the theoretical model and
the numerical simulations for various material speed ratios which were changed by
altering the thermal conductivity ratio and by altering the relaxation time ratio of
the materials.
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wave. The wave directions are determined by the wavefront as the
propagation direction is adopted perpendicular to the thermal wave-
front. For m = 1.22, the refraction angle is larger than the incident
angle, with a cold reflection wave propagating along the y axis. For
m = 0.8, the refraction angle is smaller than the incident angle,
inclining downward. There is then a hot reflection wave propagating
along the y axis. When the thermal waves are reflected and refracted
Fig. 9. Temperature profiles of the thermal wave as it propagates through the interface w
t = 0.4, 0.6, and 0.8 and (d–f): material speed ratio m = 1.22 and dimensionless time t =
at the interface, the shapes of the incident wave are changed. As dis-
cussed in Section 4.1, when m > 1, which means that the thermal
wave propagates from the thermally denser medium into the ther-
mally thinner medium, the temperature profile peak for refraction
wave is supposed to be lower than that of the incident wave at nor-
mal incidence. However, this is not true in Fig. 9(d)--(f) where the
peak is obviously higher. As shown in Eq. (14.4), the difference is
caused by the influence of the incident angle. More precisely, for
m = 1.22, there is a negative amplitude wave trough following the
refraction wavefront, which implies that the shape of the incident
wave cannot be maintained. In that case, the temperature profiles
of the refraction wave are no longer sine functions, but with some-
thing additional. That is the reason why the wave peaks are not used
to study the energy propagation, but the integral of all the ballistic
thermal energy is more representative.

The conditions were altered to analyze the factors influencing
reflection angles. Results are given in Fig. 10(a) for various material
speed ratios,m, and incident angles of 45�, 39� and 31�. Some of the
reflectionwaves were too weak, so their directions were not easy to
identify. The results fall along three horizontal lines, which shows
that the reflection angles are not a functionof theMSR. The positions
of the lines show that the reflection angles are always the same as
the incident angles. In Fig. 10(b), the incident angles vary, for differ-
ent material speed ratios, forming a single inclined line with almost
all the points along it. The slope of the line is 1 which indicates that
the reflection wave angles are always equal to the incident wave
angles for various MSRs and incident angles.

The results for the refraction angles are given in Fig. 11(a) for
various MSRs and incident angles of 45�, 39� and 31�. Fig. 11(b)
shows that the incident angles vary for material speed ratios of
ith an incident angle of 45�: (a–c): material speed ratio m = 0.8, dimensionless time
0.4, 0.6, 0.8.



Fig. 11. Refraction wave angles under the conditions of: (a) various material speed ratios, m, with incident angles of 45�, 39�, and 31� and (b) various sines of the incident
angles, sin a, with various MSRs of m = 0.8, 0.9, 1.22, and 1.5.

Fig. 10. Reflection wave angles under the conditions of: (a) various material speed ratios,m, with incident angles of 45�, 39�, and 31�; (b) various sines of the incident angles,
sin a, with various MSRs of m = 0.8, 0.9, 1.22 and 1.5.
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m = 0.8, 0.9, 1.22 and 1.5 with the data forming four separate
inclined lines with different slopes. Comparison with the values
predicted by the theoretical model, Eq. (14.2), shows that the sine
of the refraction angles is directly proportional to the sine of the
incident angles. Further investigation shows that the ratio of the
sine of these two angles is equal to the material speed ratio, m.
Therefore, Snell’s law still governs the direction changes.

4.2.2. Energy distribution
From the theoretical model, Eq. (15) suggests the significant

factors influencing the thermal energy transmittance ratio, r, are
the thermal conductivity, volumetric heat capacity, relaxation time
and incident angle. Among them, the thermal conductivity and the
relaxation time change the interface characteristics by changing
the material speed ratio. The volumetric heat capacity influences
both the thermal wave speed, v, and the ballistic temperature
amplitude, DTballistic. Therefore, these effects are analyzed
individually.
First, the material thermal conductivities were altered while the
other parameters were kept constant. The results in Fig. 12 for inci-
dent angles of 45�, 39� and 31� show that the thermal energy trans-
mittance ratio, r, increases as MSR increases. Three individual
curves are formed for the different incident angles. They intersect
at m = 1, r = 1, which means that the interface does not exist for
m = 1. For m < 1, the theoretical predictions agree well with the
simulation results. However, when m > 1, there are significant
deviations. One of the reasons causing the differences is the change
of the wave shape when m > 1, with more details shown in Fig. 13.
When the thermal wave propagates from the thermally denser
medium into the thermally thinner medium namely for m > 1, a
negative reflection wave amplitude develops as indicated by the
dark purple. The energy distribution, which is labelled by different
colors, is then not homogeneous along the wavefront. Another rea-
son for the differences whenm > 1 is that the refraction wave prop-
agates along the inclined interface upwards and interacts with
other parts of the incident wave. It is difficult to distinguish them



Fig. 12. Simulation results and theoretical predictions of the thermal energy
transmittance ratio, r, with various material speed ratios and incident angles, a. Fig. 14. Simulation results and theoretical predictions of the thermal energy

transmittance ratio, r, with various relaxation time ratios and incident angles, a.
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out. Thus, the effects of the factors on the thermal energy transmit-
tance ratio for oblique incidence are much more complex than nor-
mal incidence. The TETR of waves with smaller incident angles gets
larger for m < 1 but gets smaller for m > 1.

The impact of the relaxation time ratio was investigated while
keeping the other parameters constant. The simulation results
are compared with the theoretical predictions in Fig. 14. The ten-
dencies are the same with the impact of thermal conductivity ratio.
There are some differences for three different incident angles. The
curves intersect at a relaxation time ratio of 1. The ratio, r,
decreases as the relaxation time ratio increases. As shown in Eq.
(5), the thermal wave speed is inversely proportional to the relax-
ation time. When the relaxation time ratio is lower than 1, the
thermal wave accelerates after the interface and more energy is
conveyed. The principles relating the thermal waves to the thermal
conductivity agree well with those for the relaxation time, indicat-
ing that the MSR is a useful parameter for simplifying the problem.

The influence of the incident angle was also studied. For conve-
nience, the incident wave angle was kept constant while the inter-
face slope was changed to get different incident angles. Fig. 15
shows the influence of the incident angle for various material
speed ratios. The simulations agree well with the theoretical pre-
dictions and it shows that the curves are strongly influenced by
Fig. 13. Temperature profile of the thermal waves with m = 1.22, a=
the material speed ratio. When the thermal wave propagates into
the thermally denser medium from the thermally thinner medium
(m < 1), the thermal energy transmittance ratio is lower than 1 and
decreases with increasing incident angle. There is a sharp decrease
when the incident angle reaches around 60�. For m > 1, r is higher
than 1 and increases with increasing incident angle. As the angle
approaches the critical angle for total reflection (more details are
given in Section 4.3), r increases sharply. Therefore, the incident
angle is also a significant factor affecting the thermal energy trans-
mittance ratio. When m > 1, a relatively large incident angle is bet-
ter. However, when m < 1, normal incidence conveys more energy.

The volumetric heat capacity, qCv, changes both the thermal
wave speed and the ability to store thermal energy. Thus, the
above discussions about the temperature and heat flux profiles
are not as appropriate, as shown in Fig. 16. Both the density and
the specific heat influence the volumetric heat capacity and they
play similar roles. So in the simulations, only the specific heat,
Cv, was varied while the density was kept constant. The specific
heat capacity ratios of the two materials were set to 1.56 and
0.67, which means that the material speed ratios determined by
the volumetric heat capacity are 0.8 and 1.22 corresponding to
Fig. 9. The incident angle is 45�. The results show that the material
45�, t = 0.8. The semitransparent plane is the inclined interface.



B.-D. Nie, B.-Y. Cao / International Journal of Heat and Mass Transfer 116 (2018) 314–328 325
speed ratio determines the direction of reflection wave and refrac-
tion wave as in Fig. 9. Form = 0.8, the reflection wave is a cold wave
here while it was a hot one in Fig. 9. The temperature peak of the
refraction wave is lower here than that of the incident wave, which
also influences the energy distribution. For m = 1.22, the refraction
wave and the reflection wave behave similarly to those in Fig. 9.
However, the temperature peak of the refraction wave is higher
here than in Fig. 9 which then conveys more reflected energy.
The energy analysis shows the reasons. Fig. 17 displays the energy
distributions for the three thermal waves at different incident
angles of 45�, 39�, and 31�. As the ratio of the volumetric heat
capacity increases, the thermal energy transmittance ratio, r, ini-
tially decreases and then increases, creating a minimum point.
The TETR will reach its minimum point when the ratio of the vol-
umetric heat capacity satisfies

rmin ¼ tan2 a: ð35Þ
Fig. 16. Temperature profiles due to the refraction and reflection waves at time t = 0.

Fig. 15. Simulation results and theoretical predictions of the thermal energy
transmittance ratio, r, with various incident angles and material speed ratios, m.
Three curves are formed for the three incident angles that inter-
sect at a volumetric heat capacity ratio of 1. When the volumetric
heat capacity ratio is less than 1, thermal waves with larger inci-
dent angles have higher transmittance ratios. However, when the
volumetric heat capacity ratio is larger than 1, the thermal waves
with larger incident angles have lower transmittance ratios. The
curves have a sharp change as the specific heat ratio decreases
until total reflection occurs. There are large differences between
the simulations and the theory near the sharp change. However,
the predictions give the right tendencies and scale.

The thermal conductivity, k, and the specific heat, Cv, were both
changed while the thermal diffusivity, a, was kept constant to fur-
ther understand the effects. According to Eq. (5), the thermal wave
speeds will be the same in both media, so there will be no direction
change. Eq. (15) can be rewritten as

r ¼ Et

Ei
¼ 2ðqCvÞ2

ðqCvÞ2 þ ðqCvÞ1
¼ 2k2

k2 þ k1
: ð36Þ

Reflection waves still exist because there is difference between
the energy conveyed by the refraction wave and the incident wave.
A reflection wave is necessary to maintain energy conservation.
The relationship between the ballistic thermal energy of the
incident wave and that of the refraction wave is simply a function
of the volumetric heat capacity or the thermal conductivity. These
two variables both vary to keep a constant thermal diffusivity.
When the ratio of the thermal conductivity of the materials
increases, r increases as shown in Fig. 18. Different incident angles
have little influence on the energy distribution, so the points all fall
onto one curve. This suggests a basic relationship between the
thermal wave speed and the energy distribution in the waves,
regardless of the other parameters such as the incident angle. This
phenomenon requires further understanding of the thermal waves.

4.2.3. Applicability of the principles
The boundary heat pulse was a sine function in time in former

sections. However, most disturbances are not sine functions, but
have all kinds of shapes. Fourier decomposition can be used to deal
with complex shapes by transforming a complex heat pulse shape
into a series of sine and cosine functions,
6 for an incident angle, a, of 45� and specific heat ratios of (a) 1.56 and (b) 0.67.



Fig. 19. Simulated thermal energy transmittance ratios for a rectangular wave, a
triangular wave and a ramp wave compared with models using a series of sine
function heat pulses.

Fig. 18. Simulation results and theoretical predictions of the thermal energy
transmittance ratio, r, for various thermal conductivity ratios and incident angles
when the thermal diffusivity is kept constant.

Fig. 17. Simulation results and theoretical predictions of the thermal energy
transmittance ratio, r, with various specific heat ratios and incident angles, a.
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f ðtÞ ¼ a0 þ
X
n

an sinðnxtÞ þ
X
n

bn cosðnxtÞ; ð37Þ

where

a0 ¼ R
T f ðtÞdt

an ¼ R
T f ðtÞ sinðnxtÞdt

bn ¼ R
T f ðtÞ cosðnxtÞdt

8><
>: ; ð38Þ

T ¼ 2p
x

: ð39Þ

Simulations to testify the applicability of the principles used a
rectangular wave, a triangular wave and a ramp wave as incident
waves. As demonstrated before, the most important feature of
the interface is the MSR. Thus, in the simulations, the material
speed ratio was altered while the incident angle was kept 45�
and the other parameters were constant.

The predictions with the series of sine waves agree well with
the simple functions in Fig. 19; thus, the principles deduced from
the sine function thermal wave can be extended to arbitrary
shapes. At least for this simple case, Fourier decomposition is effec-
tive and the waves show good linearity for superposition. There-
fore, the thermal wave shapes do not significantly affect the
energy distribution at the interface. Further confirmation is
required to show this in a wide range of conditions.

4.3. Total reflection

When light propagates from an optically denser medium to an
optically thinner medium and the incident angle is greater than
the critical value, total reflection occurs. Similarly, when a thermal
wave propagates from a thermally denser medium to a thermally
thinner medium, total thermal wave reflection (simply called total
reflection as well) might also occur. As Eq. (16) shows, when cosb
reaches zero, there is no energy transmitted across the interface,
although when v2 > v1, the thermal energy transmittance ratio r
is larger than one. Based on Eq. (14.2) which relates the refraction
angle and the incident angle, the critical angle beyond which total
reflection occurs can be expressed as

hcritical ¼ arcsin
v1

v2

� 	
: ð40Þ

When the incident angle reaches the critical value, cosb is equal to
zero and the total refraction ballistic thermal energy is zero.

The temperature profiles better represent the ballistic thermal
energy than the heat flux profiles. Actually, when total reflection
occurs, the energy transmitted across the interface is not remark-
ably reduced. According to Section 4.1, the reflection wave is a cold
reflection wave that conveys energy in the direction opposite to
the propagation direction of reflection wave. Unlike for light or
sound, the thermal wave energy is determined by the wave ampli-
tude, not by the square of the amplitude. Therefore, the wave
phase is significant. In optics, a half-wave loss occurs when light
propagates from an optically thinner medium into an optically
denser medium. However, the energy conveyed is not changed.
The principles are not the same for thermal waves where the wave
phase plays an important role. The refraction wave in Fig. 20 does
not have a wavefront, but energy still propagates across the inter-
face as a positive temperature fluctuation. The intersection
between the incident wavefront and the interface has a tempera-
ture peak that moves along the interface. The cold reflection wave
has a positive temperature fluctuation moving in front of the wave
trough. Since there is no wavefront for the refraction wave, the bal-
listic thermal energy cannot be calculated in the usual way. This



Fig. 20. Temperature profiles with total reflection with an incident angle of 45�, material speed ratio m of 2.24, and time t = 0.8.
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phenomenon is interesting and requires further investigation to
understand the nature of ballistic thermal energy transport.
5. Conclusions

The thermal behaviors of a two-layer slab with perfect contact
were studied bothnumerically and theoretically based onCVmodel.
The numerical simulations dealt with a two-dimensional heat con-
duction problem in a rectangular region with the equations solved
by the alternative direction implicit methodwith a staggeredmesh.
The chasingmethod is used to solve the equation set instead of iter-
ations which significantly reduces the computational times with
good numerical stability. The scheme is effective, robust and rela-
tively accurate, and can be easily extended to other thermal wave
models. The interface theory neglects the diffusion term and uses
the traveling wavemethod. Moreover, a set of theoretical equations
is given to describe the principles that the phenomena of reflection
and refraction at the interface of the thermal waves obey.

The temperature fluctuations are analyzed with the concept of
ballistic thermal energy, which is used to describe the thermal
energy flow in the media, as one of the main features of wave prop-
agation. The thermal energy transmitted across the interface is
found by transforming the space-domain integral into a time-
domain integral. This method avoids the influences of damping
and dispersion to show the interface characteristics clearly.

The thermal wave transport principles when crossing an inter-
face were investigated from the aspects of shapes, directions and
energy distribution. When a thermal wave propagates from a ther-
mally thinner medium into a thermally denser medium, the tem-
perature peak will rise while the heat flux peak will fall and the
reflection wave will be a hot reflection wave. When the thermal
wave propagates from a thermally denser medium into a thermally
thinner medium, the temperature peak will fall while the heat flux
peak will rise which indicates a cold reflection wave. The reflection
angle is always the same as the incident angle, while the ratio of
the sine of the refraction angle to the sine of the incident angle is
always identical to the MSR, which is the ratio of thermal wave
speed in material II to that in material I. An equation for the energy
distribution was developed based on the wave model that indi-
cates that the energy distribution is a function of the MSR, the vol-
umetric heat capacity and the incident angle. Comparisons
between the theoretical model and simulation results show that
this equation accurately describes the energy distribution after
refraction and reflection. The model also shows that the ballistic
thermal energy of refraction wave can exceed that of the incident
wave, which is very interesting and needs further investigation.
Total reflection of the thermal wave exists, but part of the ballistic
thermal energy still propagates across the interface and the reflec-
tion wave is a cold wave, which cannot convey all the energy obvi-
ously. The temperature profiles show positive temperature
fluctuations before the wave trough of the reflection wave, which
differs from electromagnetic waves and mechanical waves. This
paper provides important guidance for thermal energy control in
multilayered composite materials. Thermal wave behaviors at the
interface can be used to control thermal energy distributions in
structures such as thermal energy collectors and thermal diodes.
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